

Metabolomics at Gustave Roussy

sylvere.durand@gustaveroussy.fr

- Metabolome can be monitored by several technics (Seahorse, ELISA kits, MS)
- Metabolomics by Mass Spectrometry: direct measurements of metabolites extracted
- Wherever are metabolites could be an application for metabolomics

>> One metabolomics, different approaches

- Applications to **pre-clinical** (mice) and **clinical** (human cohorts) projects
- Both Intracellular & extracellular samples
 - Suspended or adherent cell lines (WT,KO...); supernatant/medium of cells or bacteria cultures
 - All **tissues**: liver, heart, muscle, tumor/biopsy, kydney spleen, hippothalamus, hippocampus, spinal cords...
 - Gut contents: ileum, colon, feces
 - Biofluids: Serum / plasma (HepLi), tumor fluids, bone marrow fluid

>> Targeted analysis: a straightforward workflow

>

From one mere sample, 150-400 metabolites in one single output TCA, bile acids, polyamines, amino-acids, nucleot(s)ides,nucleosides phosphates, vitamines, short chain fatty acids, ketone bodies, free fatty acids, carnitines, phospholipids, cofactors, phenols, CoAs

>>> Bulk metabolomics

>> Bulk analysis, some concretes

- 6 mice per condition
- 30 mg of ileal tissue per mouse
- Widely target by LC/MS
- Bile acids (targeted method) figured out 0 to be interesting
- Extraction of new bile acids ions signal from the **profiling** acquisition to complete the targeted analysis

Groups Leucocholic acid Taurodeoxyhyocholic acid Taurolithocholic acid Taurocholic acid Tauro-α-β-ω-muricholic acid Glycocholic acid Tauroursodeoxycholic acid Taurohyocholic acid Taurochenodeoxycholic acid Taurodeoxycholic acid Glycoursodeoxycholic acid Phenylalanocholic acid Tyrosocholic acid Ursodeoxycholic acid Chenodeoxycholic acid Cholic acid 12-dehydrocholic acid Deoxycholic acid Glycodeoxycholic acid Leucomuricholic acid Lithochiolic add Hyodeoxycholic acid Tyrosomuricholic acid Glycochenodeoxycholic acid Phenylalanomuricholic acid Murideoxycholic acid Omega-muricholic acid Alpha-muricholic acid

Fidelle et al.; Science; 2023

>> Targeted or profiling analysis?

- Profiling: searching unk/novelties/putatives into full scan MS data
- Strength: 1000s of metabolites in one method, for novelties (drug fate), fingerprints (heatmaps, PCA), retro-active data treatment + identification
- Weakness: no straightforward for identification, not all pathways represented

>> Profiling for drug fate: 3,4-dimethylchalcone

In silico calculated transformation, and profiling of the corresponding m/z (observed transformation)

Observed transformation	Dealkylated
3,4-Dimethoxychalcone_Dehydration-Reduction	TRUE
3,4-Dimethoxychalcone_Dehydration-Reduction	FALSE
3,4-Dimethoxychalcone_NA	TRUE
3,4-Dimethoxychalcone_Reduction	TRUE
3,4-Dimethoxychalcone_Reduction	TRUE
3,4-Dimethoxychalcone Reduction	TRUE
3,4-Dimethoxychalcone_Reduction-Sulfation	TRUE
3,4-Dimethoxychalcone_Desaturation-Oxidation-Glutamine-Conjugation	FALSE
3,4-Dimethoxychalcone_GSH-Conjugation-2	TRUE
3,4-Dimethoxychalcone GSH-Conjugation-2	FALSE

>

Cerrato et al.; Cell Death Dis.; 2023

>>> Fluxomics

>> Fluxomics: labelling principle

- Nutrient labelled with stable isotope (¹³C, ²H)
- Glucose, glutamine, spermidine, arginine, methionine, palmitic acid...
- Red/green: labelled; black: unlabelled

>> Fluxomics for dynamic experiments

- Labelled glucose (white dots) or palmitic acid (black dots) as nutrients
- Ratios in barplots point out absorption of nutrient into the metabolomic pathway
- Information on the activity of the pathway

>> Fluxomics to emphazise bulk analysis

Yeast

-N (h)

 Comparison of polyamines from multiple models fasting

- Fluxomics performed on yeast (comparisons arginine labelled with methionine labelled)
- 12

>>> MS Imaging

>> MS Imaging by DESI: acquisition and multiplexing

Spatial diversity in organs, one pixel = one mass spectrum (50 μm²)

- Multiplexing with IHC (GR Pathologie Expérimentale et TRAnslationnelle platform)
- Pseudo-profiling pseudo-target of metabolites of interest + 1000 unknow metabolites with more intense signals with putative annotation

MS Imaging by DESI: outputs

Pseudo-target-profiling export TXT Normalization (TIC) image cleaning (crop, m/z, file) In Vs Out mask

Pixels distributed by PCA/UMAP clustered by Kmeans/HDBscan

regions of interest set with users

Boxplots, Heatmaps, UMAP, PCAs, volcano plots, XLS

>> MSI, some concretes

>>> Annexes : targeted methods

Validated metabolites: generic profiling (P1)

Hundreds of metabolites entries in the GR compound database Schymanski's level annotation 1/2/3

Ascorbic acid NAD Niacinamide Nicotinic acid Pantothenic acid Retinol Riboflavin S-adenosylhomocysteine S-adenosylmethionine	Butyrylglycine Choline phosphate Glycerol-3-phosphate Glycerophosphorylcholine Hexanoylglycine O-phosphoethanolamine PCae(14:0) PCae(15:0) PCae(16:0) PCae(16:1) PCae(17:0) BCae(49:0)	Aspartic acid Cysteine Glutamic acid Glutamine Histidine Isoleucine Leucine Methionine Ornithine Phenylalanine Proline	2-Phenylglycine Anacardic acid Benzoic acid Caffeine Cholic acid Corticosterone Cortisol Coumaric acid Cystamine Cysteinylglycine Dimethyl-oxoglutaric acid	2-deoxyadenosine 2-deoxycytidine 2-deoxyguanosine 5-methyluridine Adenine Adenosine ADP ADP-ribose AMP cAMP CDP	2-hydroxybutyric acid 3-indoxyl sulfic acid 3-methylhistidine 4-hydroxyproline 5-aminovaleric acid 5-methylthioadenosine Aminocaproic acid Anthranilic acid Dimethylarginine Dimethylglycine GABA Glutathione
S-lactoylglutathione Succinyladenosine Taurine Trimethyl-lysine	PCae(18:0) PCae(18:1) PCae(20:1) PCae(20:3) PCae(20:4) PCae(20:5) PCae(22:6)	Arachidonic acid Capric acid Caproic acid	Erytimor Estradiol Gamma-glutamylleucine Gamma-glutamylphenylalanine Gamma-glutamyltyrosine Gentisic acid Glycolic acid	CMP-N-acetylneuraminate CTP cUMP Cytidine Cytosine GDP GMP	Homovanillic acid Hydroxyphenyllactic acid Hypotaurine Indole-3-butyric acid Indole-3-lactic acid Indole-3-propionic acid Ketoisovaleric acid
N2-acetyllysine N6-acetyllysine NAAG N-acetylglutamic acid N-acetylglutamine N-acetylglutrescine N-acetylspermidine	2-hydroxyglutaric acid 3-hydroxybutyric acid cis-Aconitic acid	Caprylic acid Eicosadienoic acid Eicosenoic acid Isovaleric acid Linoleic acid Margaric acid Myristic acid Oleic acid Sebacic acid	Hippuric acid Hydrocinnamic acid Imidazole Leucylproline Lithocholic acid N-glycolylneuraminic acid Phenylalanylphenylalanine Phenylbutyric acid	Guanosine Hypoxanthine IMP Inosine N1-methyladenosine N1-methylguanosine Thymidine Thymine	Kynurenic add Kynurenice Methionine sulfoxide Methylindole-3-acetic acid Ox. glutathione Phenylacetylglycine Phosphoserine Pipecolic acid Quinolinic acid
	Maionic acid Phosphoenolpyruvic acid Succinic acid trans-Aconitic acid	Stearic acid 32 FAs Carnitine 34 ACs	Proline betaine Pyrogallol Quinic acid Taurocholic acid Taurodeoxycholic acid Ursodeoxycholic acid	ÚDP UMP Uracil Ureidosuccinic acid Uric acid Uridine Xanthine	

Xanthosine

>

>>

SCFA / KB / TCA / Aas / Glycolysis (T1)

Short chain fatty acids, Ketone Bodies, Tricarboxylic acids cycle, amino acids, glycolysis
Application : fecal contents, tissues, plasma/serum
HPLC/MS-MS with derivatization, alternative to T1
72 metabolites detected with sensitivity & discrimination

	Amino-acids			Small organic acids, SCFA	3-methyl-2-oxovaleric acid				
x10 ⁵	Lysine	TCA cycle	Ketone bodies	Adipic acid					
3.2	Alanine	Lactic acid	3-hydroxybutyric acid	Anthranillic acid	2-oxovaleric acid				
3-	Leucine Isoleucine	Citric acid	Acetic acid	Hippuric acid	Benzoic acid				
0	Nethionine	Isocitric acid	Acetoacetic acid	Malonic acid	Capric acid				
2.8	Prenylalanine	2-oxoglutaric acid		Maleic acid	Caproic acid				
2.6	Serine	Malic acid		Quinic acid	Butanoic acid				
2.4	Tryptophan	Pyruvic acid		Quinolinic acid	Propionic acid				
2.2	Tyrosine	Succinic acid		3-hydrodutaric acid	Isobutyric acid				
2-	Valine	i unanciaciu		3-phosphoglyceric acid	Isocaproic acid				
2	Glutamic acid	Glycolysis		4-hvdroxymandelic acid	Isovaleric acid				
1.8	Glutamine	Glucose;Fructose		4-hydroxyproline	Heptanoic acid				
1.6	Histidine	Giyceraldenyde-3-phos	sphate	2-hydroxybutyric acid	Caprylic acid				
1.4	Arginine	Ribose-o-phosphale;Ri	pulose-5-phosphale	Valeric acid	Glyceric acid				
12	Asparagine			Λ	Glycolic acid				
	Aspartic acid				Giyoxyiic acid Mothylmolonic acid				
17	Λ				Methylmaionic acid				
0.8-					Nicotinic-acid Nicotinic-acid-riboside				
0.6		$\wedge \wedge$			Oxaloacetic acid				
0.4-					Sebacic acid				
0.2					Pantothenic acid				
0.2					Orotic acid				
0	05 1 15 2 2	5 3 35 4	45 5 55	6 65 7 75 8	85 9 95 10 105 11				
	Counts vs. Acquisition Time (min)								

Currency metabolites (T2)

67 metabolites measured by UHPLC/MSMS Applications: cultured cells, tissues and fecal content (dNTPs) Accurate quantification of adenylate energy charge ratio Glycolysis pathway

Polyamines (T3)

15 metabolites polyamines and derivated measured by UHPLC/MSMS + **13 Aa**, **TMA/TMAO** Applications: tissues, plasma, gut and cultured cells

CANCER CAMPUS

GRAND PARIS

Bile acids (T4)

Applications : tissues, plasma and gut microbiota Biles Acids, unconjugated and Tauro/Glyco conjugated

Thymidine Sarcosine Ornithine

7.5

8.5

Nicotinamide NAD FAD AMP Guanosine Guanine Cytosine Cytidine Adenosine Adenine 5-methylcytosine 5-hydroxymethylcytosine Thymine

Nucleo(t/s)ides, bases

Small Organic acids GABA

Betaine Acetylcholine 4-hydroxyproline 3-methylhistamine TMAO TMA

Neurotransmiters

12 5

Serotonine Norepinephrine Epinephrine Dopamine

11.5

Ion pairing LC/QQQ, diversity, polar metabolites,

Glycolysis/PPP

>

x10^b

4. 2 4-3. 8 3. 6 3. 4 3. 2 3-

2. 8 2. 6 2. 4 2. 2 2-1. 8

1.4

1. 2

0.8 0.6

0.4

Sedoheptulose-7-phosphate Glycerol-3-phosphate Glyceraldehyde-3-phosphate Phosphoenolpyruvic acid Fructose-6-phosphate Fructose-1-6-biphosphate Erythrose-4-phosphate Ribose-5-phosphate

2.5

3.5

>> NFPA (T5)

Ribitol;Xylitol Raffinose UDP glucose Glucose Erythritol

Aminoacids

Tyrosine Tryptophan Taurine Serine Proline Phenylalanine Methionine Lysine Isoleucine Leucine Homoserine Histidine Histamine Glycine Glutamic acid Beta-alanine Aspartic acid Arginine

5 5

6

Alanine Cystine Cysteine Citrulline S-adenosylhomocysteine S-adenosylmethionine Dimethylglycine Hypusine Hypotaurine Kynurenine

6.5

Counts vs. Acquistion Time (min)

